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Two methods have been compared for the determination of the inertial properties of a small, fixed
wing UAV. The first method uses the standard single degree of freedom pendulum method and the
second method implements a novel, potentially easier, three degree of freedom pendulum method,
which yields the entire inertia tensor from a single swing test. Both methods are using system iden-
tification of the pendulum motion to estimate the inertial properties. Substantial corrections (up to
25%) have to be applied to the experimental results. These corrections are caused by the accelera-
tion of the pendulum being immersed in the surrounding air, also called the added mass effect. It has
been found that the methods presented in literature to determine the corrections for full scale aircraft
do not give the correct results for the small scale UAV under consideration. The only feasible, cost-
effective method to generate these corrections utilise swing tests with a geometrically similar object
of known inertial properties. It has also been found that the corrections are unique with respect to
the experimental methods. Several benchmarking methods, including the innovative use of static and
dynamic wind tunnel test data, give high confidence in the results.

NOMENCLATURE

m : Mass
l : (Pendulum) Length
S : Reference area
O : Pivot point
M : Applied moment
F : Applied force

X Y Z : Coordinate axes
CG : Centre of gravity
g : Gravitational acceleration
V : Velocity
D : Drag force
T : Kinetic energy
ρ : Air density
q̄ : Dynamic pressure
I : Mass moment of inertia
ω : Rotation rate

DoF : Degrees of freedom
X Y Z : Coordinate axes
φ θ ψ : Pendulum attitude angles
p q r : Pendulum rotation rates

X : Vector of states
Y : Vector of measurements
J : Mass moment of inertia tensor
J : Mass moment of inertia tensor

RO,CG : Vector from point O to pendulum CG
CD : Non-dimensional drag coefficient
Clβ : Rolling moment derivative due to sideslip
Cmα : Pitching moment derivative due to angle of attack
Cnβ : Yawing moment derivative due to sideslip

Subscripts :
x y z : Axes labels
T A : Test article
F : Support frame
O : about point O
D : due to drag
g : due to gravity

m f : due to added mass
Other :

(˙) : Time derivative
d
dt

()

bold : Vectors/Matrices
xT : Transpose of x

I. Introduction
Small fixed wing Unmanned Aerial Vehicles (UAV) are gaining increasing interest due to ongoing miniaturisation
of electronic systems [1]. They can be equipped to fly sensor payloads not possible even a few years ago. The
small scale enables relatively easy operation with consideration to cost and manpower. This makes the small
scale fixed wing UAVs popular with university researchers, prototype and system developers, hobbyists, and other
groups with limited resources, such as small start-up companies.
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Airframe inertial properties have been of interest since the early days of aviation because of their importance
in characterising the handling qualities of aircraft. Their importance has now further increased due to the use of
automated flight control systems. Modern model-based control systems require an accurate model of the airframe
which includes the mass and inertial properties. The same is true for flight simulation applications. With the
growing importance of UAVs, it is becoming crucial to obtain estimates for these properties for small scale flight
vehicles.

This paper describes work carried out during the development of a UAV flight test facility at the University
of Sydney. The project aimed to develop experimental instrumentation and methods to acquire accurate flight
test data from small sized, fixed wing UAVs. To perform system identification (ID) on the flight data, the inertial
properties of the UAVs had to be determined accurately. On new UAV designs, usually a sufficiently detailed
CAD model would be used to determine the inertial properties of the airframe. This was not possible for the
existing, commercial UAV design under consideration here, because the airframe structure is too complex to draw
up precisely in CAD without destructively dismantling the aircraft, particularly since no engineering drawings
were available. The only possible method to estimate the inertial properties, in a time and cost effective manner,
was by experiment.

In this paper, the common single degree of freedom (1DoF) pendulum method and a novel, three degree of
freedom (3DoF) pendulum method are tested and compared. The 3DoF method requires only a single swing test to
obtain the entire inertia tensor at once. This is potentially easier and less time consuming, because the test article
has to be mounted onto and aligned with the test rig only once, compared to the three orientations required for the
1DoF method (four, if IXZ is required as well). The 3DoF method has not previously been applied to fixed wing
UAVs, leading to accuracy and usefulness of the method being investigated for this case. Furthermore, significant
corrections for aerodynamic influences on the pendulum motion are required to achieve an accurate test result for
small scale fixed wing UAVs. Methods to develop and apply these corrections are tested and discussed in this
paper.

II. Background
Reference [2] presents a review of available inertia measurement methods for various purposes. The main dif-
ference between the various methods is the use of either forced or free oscillations. Forced oscillation methods
use an apparatus to force the test specimen into either translational or torsional oscillations [3] with the inertial
properties being measured indirectly by the force or moment required to move the test article. These methods can
be very accurate [4] but require a complicated and expensive apparatus that is prohibitive for typical low-budget
university research.

Free oscillation methods use some sort of translational or torsional pendulum. These will oscillate freely under
the influence of gravity alone, once displaced from rest and released. Pendulum designs have been used with a
single suspension wire as the simplest method or using multiple suspension wires to create either a translational
or torsional pendulum[5, 6]. The latter is more suitable for aircraft applications, because a multi-wire pendulum
will hold the test article in a defined attitude.

The most widely used pendulum swing experiment for aircraft is the two-wire translational pendulum, used
since the 1930s [7]. An extension of the basic method [8] discusses the aerodynamic effects affecting the pendulum
motion due to the geometric properties of fixed wing aircraft (buoyancy, entrapped air mass and the air mass that
travels with the pendulum) and gives empirical methods to estimate the magnitude of those corrections, based on
the geometric properties of typical aircraft components. These aerodynamic effects can add up to 20% on top of
the true airframe inertias and are therefore very significant [8].

A further extension of the pendulum method [9] from 1948, indicates that a major source of difficulty of
all previously mentioned methods is the requirement to accurately determine the pendulum length, that is the
distance from the pivot to the pendulum CG. The difficulty lies with how the vertical CG position of the aircraft
with respect to the pendulum pivot is to be determined. This method proposes to swing the pendulum with two
different arbitrary lengths, and use the two results to simultaneously solve for the pendulum lengths. This is
potentially more accurate than measuring this quantity. A different method was developed in 1950 [10] to enable
inertia measurements for large and heavy airframes. The pendulum method is impractical for such large airframes
and it was replaced by a ground based spring support. Otherwise this method is similar to the pendulum method.

A novel method that uses multi-degree of freedom motion together with system identification [3], uses an
apparatus which simultaneously allows rotation about the pitch and yaw axes and translation along the roll and
pitch axes. The method does not require the measurement of the CG position of the test article, compared to the
previously mentioned techniques. On the other hand, the required test apparatus is very complex.

There have been some existing references dealing specifically with small scale UAVs [11, 12, 13, 14, 15].
Reference [11] compares different pendulum methods. The other references all use some form of the standard
bifilar pendulum apparatus. On the very small scale, reference [16] reports on a test of a small quad-rotor flight
vehicle. The paper also performs a comparison with a CAD modelling method and concludes that considerable
errors between physical experiments and CAD modelling are possible, unless extreme care in the modelling is
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taken. Another very promising, novel method, specifically for small scale UAVs [17], is based on a three degree
of freedom pendulum, suspended from a three axis gimbal. It uses system identification of the pendulum motion
to estimate the entire inertia tensor at once. This method is the basis for the second technique to be presented in
this paper.

As noted above, the results of the swinging tests of aircraft require substantial corrections due to aerodynamic
effects. A very interesting report regarding these corrections looks into all kinds of error sources for a clock
pendulum [18]. Some of these errors are very relevant for the current project and are indeed the same as reported
by Soule and Miller [8]. Other error sources, such as the change in gravitational acceleration due to to the position
of the moon with respect to earth, are affecting only the long term stability of a clock pendulum and do not need
to be accounted for during the short experiment durations of the airframe swing tests.

Using system ID of the pendulum motion instead of timing the oscillation periods [8, 9], has proven more
reliable for the small inertias involved, because the system ID method uses the full motion data to estimate fre-
quency and damping instead of characterising the motion from a few single data points from a timer. It is possible
to obtain reasonably accurate data using a millisecond precision timer, but exploratory tests have shown that this
requires many more experiment repeats than using the system ID method. Most recent implementations of inertia
experiments use system ID for the data processing [3, 16, 17], and a similar approach has been taken for the
presented work.

III. Theory of Pendulum Motion
A. 1 DoF Pendulum

The equations of motion for a rigid body, single degree of freedom pendulum can be developed from the free body
diagram in Figure 1. The test article with mass m, inertia I and frontal area S swings about pivot point O. The
pendulum length or the distance between O and the CG of the test article is l.
From Euler’s second law, the rotational equation of motion for the rigid body pendulum can be written as

M = IOω̇ (1)

where M is the applied moment about O, IO the inertia of the pendulum about O and ω̇ the rotational acceleration
of the pendulum.

For the system identification algorithm, the equations of motion need to be expressed in state space form,
depending on the state derivative vector Ẋ and the measurement vector Y. The state vector for the pendulum is
X = [θ ω]T , where ω is the rotation rate of the pendulum and θ the attitude angle. Using Eq. (1), the state rate
equations for the rigid body pendulum become

Ẋ =

 θ̇
ω̇

 =

 ω

M/IO

 (2)

The applied moment is the sum of the moment due to the gravitational acceleration, which is driving the
motion, and the opposing moments due to aerodynamic drag and bearing friction. The moment due to the gravi-
tational acceleration about point O is

Mg = −mgl sin θ (3)

g

Drag

V

θ

CG

Body:
Mass m
Inertia I
Frontal area S

pendulum 
length l

M O

Reference line

Figure 1. Free body diagram of a physical pendulum
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The moment due to the drag about point O opposes the motion according to

MD = −q̄S CD × l × sign(ω) (4)

= −0.5ρS CDω
2l3sign(ω) (5)

with the dynamic pressure q̄ = 0.5ρV2 and V = ωl. The term sign(ω) ensures that the drag force is always
opposing the direction of the motion. Friction in the bearings is small compared to the drag of the test article and
will not be modelled separately. It has a similar effect on the motion as the drag and therefore the identified drag
coefficient will be slightly higher due to that friction.

So far, the equations of motion for the pendulum include the inertia of the pendulum about the pivot O. If the
inertia of the test article about its CG is desired, the parallel axis theorem can be used to express the inertia IO of
the pendulum as

IO = I + ml2 (6)

The measurement or output equations Y consist of the two states θ and ω that will be measured directly by the rig
instrumentation. Using the above derivations, the final equations of motion can be written as

Ẋ =

 θ̇
ω̇

 =

 ω
Mg+MD

I+ml2

 (7)

Y =

 θ
ω

 =

 1 0
0 1

  θ
ω

 (8)

Inspecting Eq. (7), some important implications for the experimental methodology can be immediately de-
ducted. Firstly, because the expected inertias I of the test article are going to be small, it is paramount to make the
pendulum length l as short as possible. For a small fixed wing UAV, the parallel axis component of the total inertia
of the pendulum, ml2, will always be large compared to the test article inertia I, and will dominate the magnitude
of the denominator in Eq. (7). If the pendulum is long, this will be even more significant. A long pendulum,
therefore, makes it very difficult to identify the small inertia I with good precision. This problem has also been
referred to in references [8] and [17].

Secondly, using knowledge of the system identification algorithm, it is also beneficial to estimate the full
inertia of the pendulum about the pivot (IO = I + ml2) instead of estimating the inertia of the test article I in
isolation. The parallel axis theorem can be applied after the estimate for IO has be determined. The system ID
algorithm perturbs each parameter by a small amount and calculates the significance of this perturbation onto the
fit of the estimated system response to the measured data. Now, if Eq. (7) is used in its stated form, a small
perturbation of the parameter I will not have a significant effect on the magnitude of the denominator because ml2

is always much larger in magnitude. Perturbing I + ml2 instead gives a more robust response and the algorithm
converges much faster and more accurately. Carefully considering those two issues during the experimental design
is the first step to an accurate estimate of small scale fixed wing UAV inertial properties.

To determine the pendulum length l, the vertical CG location of the test article must be known precisely with
respect to a reference point [7]. This can be achieved by suspending the test article from a point longitudinally and
vertically offset from the CG as shown in Figure 2a. A vertical line from the suspension point to the longitudinal
CG location will indicate the vertical CG position as shown in the Figure. This can then be measured from any
convenient reference line on the test article as indicated. The length l is then the distance from the pivot to this
reference line plus the above measurement to the vertical CG of the test article. For a combination of objects, such
as the test article mounted on a support frame, as shown in Figure 2b, the pendulum length l to the combined CG
can be found from a moment balance about point O

l =
mF lF + mT AlT A

mF + mT A
(9)

where the subscript F denotes the properties of the support frame and T A the properties of the test article.
The pendulum uses a support frame to hold the test article. This removes the need for any wire attachment

points on the test article. Hence, after the swing test results are obtained, a final step is necessary to extract the
inertial properties of the UAV about its CG. This step is the removal of the support frame inertias from the results.
The support frame properties have to be determined beforehand by a separate experiment or other means such as
CAD modelling. A simple way of doing this would be to just subtract the inertias of the frame from the combined
result, but this would lead to error because the inertia of the frame is typically measured about its own CG, which
can be quite different from the combined CG location, as shown in Figure 2b. In addition, the CG location of the
UAV is unlikely to be identical to the combined CG position as illustrated in the Figure. To separate the inertial
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Reference line

longitudinal CG
location

vertical CG
location

a) Vertical CG determination

Frame CG

Test Article CG

Combined CG

Eff. Pendulum Length 
to Pivot (l)

l

l

dCG

mTA

mF

lTA lF

1

2

b) CG distance definitions

Figure 2. Pendulum CG definitions

properties of the frame and the UAV accurately, it is therefore necessary to apply the parallel axis theorem, using
the masses and dimensions given in Figure 2b. This leads to the equation for the test article inertia IT A about its
CG

IT A = −[IF + mF × l22] − mT A × (−l1)2 + Imeas (10)

where IF is the frame inertia about its CG, mF the frame mass, mT A the test article mass, Imeas the combined inertia
result from the system ID and the dimensions li as defined in Figure 2b.

B. 3 DoF Pendulum

The three-dimensional rigid body pendulum, similar to that introduced in reference [17], is an extension of the
single degree of freedom pendulum from the previous section. Figure 3 shows a sketch of the support frame with
the axes definitions. The figure also contains an image of the three degree of freedom gimbal used to suspend the
pendulum.

In reference [17], all equations were developed in the body frame of the pendulum with origin at the CG
of the pendulum. As mentioned above, this is not ideal because it leads to numerical issues during the system
identification. Hence all equations are developed in the earth fixed frame with origin at the gimbal pivot point O.
This increases the stability of the system ID procedure. The body axes inertia tensor about the pendulum CG is
computed using the parallel axes theorem as a second step.

Gimbal pivot

z

x

y

z

x

y

R

O

O,CG

Pendulum CG

e

e

e

b

b

b

a) Sketch of the support frame, suspended from the gimbal. Shown are
the earth fixed axes at the gimbal pivot O and the pendulum body axes at
the pendulum CG. (A photo of the apparatus is shown in Figure 5)

b) 3 axis motion gimbal with common pivot point

Figure 3. 3 DoF Pendulum diagram and 3 axis motion gimbal.

5 of 20



The derivation method of the equations of motion for the 3 DoF rigid body pendulum is similar to the single
axis pendulum described before. Euler’s second law, now in three dimensions, describes the oscillatory motion of
the rigid body as

M = Jω̇ + ω × Jω (11)

with M being the applied moment vector about the pivot point, J the inertia tensor of the pendulum about the pivot
and ω the vector of angular velocities p, q and r of the pendulum. For a typical aircraft with symmetry about the
xz plane, the inertia tensor simplifies to

J =


Ix 0 Ixz

0 Iy 0
Ixz 0 Iz

 (12)

The state space form of Eq. (11) with states ω = [ p q r ]T , as required for the system ID algorithm, can be
written as

ω̇ = J−1(−ω × Jω) + J−1M (13)

Similar to the 1 DoF pendulum, the applied moment is the sum of the moment due to gravity and the moments
caused by bearing friction and aerodynamic drag. The gravitational force vector acting at the CG is Fg = mg. The
moment due to gravity can then be obtained by defining a vector RO,CG from the pivot point to the pendulum CG
and taking the cross product

MG = RO,CG × FG (14)

The components of the vector RO,CG in the earth fixed frame can be found by rotating the body axes vector
RO,CG = [ 0 0 l ]T between the pivot point and the pendulum CG (as shown in Figure 3) into the earth fixed axes
using standard orthogonal transforms.

The damping terms are the moments due to bearing friction and the moment of the aerodynamic drag of
the pendulum about the pivot point. The drag vector is the opposite of the velocity vector, which due to the
complicated motion of the 3 DoF pendulum constantly changes direction. Also, the drag will be different about
each axis because the aircraft shape. Therefore, the drag is treated in component form for each axis, similarly to
the bearing friction. No other aerodynamic force is expected to create a significant moment about the pivot point
to influence the motion. Drag and bearing friction have a similar effect on the motion and can be combined into a
single vector MD = [MD,x MD,y MD,z], unless their separate numerical values are of interest. For this project this
was not the case, so the applied moment becomes

M = RO,CG × F −MD (15)

Expanding M into its components gives
Mx

My

Mz

 = l


cos φ sin θ
− sin φ

cos φ cos θ

 × mg


0
0
1

 −


MD,x

MD,y

MD,z

 (16)

= mgl


− sin(φ) − MD,X

− cos(φ) sin(θ) − MD,Y

−MD,Z

 (17)

Above equations require the attitude angles φ, θ and ψ of the pendulum with respect to the earth fixed frame.
These states can be added to yield the final state vector

X = [ φ θ ψ p q r ]T (18)

where the angles φ, θ and ψ are the attitude angles of the pendulum in the X, Y and Z axis, respectively.
The state rate equations for the Euler attitude angles can be found in any reference book on flight mechanics,

such as reference [19]. These, together with Eqs. (13) and (17) give the final equations of motion for the 3 DoF
rigid body pendulum
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φ̇ = p + tan(θ)(q sin(φ) + r cos(φ)) (19)

θ̇ = q cos(φ) − r sin(φ) (20)

ψ̇ = [q sin(φ) + r cos(φ)]/ cos(θ) (21)

ṗ = IxzΓ[q(Ix p + Ixzr) − Iy pq] + IzΓ[q(Ixz p + Izr) − Iyqr] − IzMxΓ + IxzMzΓ (22)

q̇ = [p(Ixz p + Izr) − r(Ix p + Ixzr)]/Iy + My/Iy (23)

ṙ = −IxΓ[q(Ix p + Ixzr) − Iy pq] − IxzΓ[q(Ixz p + Izr) − Iyqr] + IxzMxΓ − IxMzΓ (24)

where Γ = 1/(I2
xz − IxIz). The measurement equation Y is

Y = I × [ φ θ ψ p q r ]T (25)

where I is the identity matrix. The identified inertias about the pivot can then be transferred to the test article CG
using the parallel axis theorem as before. The only terms affected are Ix and Iy, while for Iz and Ixz the parallel axis
theorem component is zero. The procedure of removing the support frame inertias from the solution is identical
to the single axis pendulum method.

IV. Aerodynamic Effects on Estimated Inertial Properties
During the swing experiments the pendulum is immersed in a fluid (the surrounding air) and therefore the mea-
sured inertial properties will be affected by added mass due to the enclosed air, the buoyancy of the airframe in the
surrounding air, and by the inertia of the air being accelerated by the pendulum [8, 18, 20]. Hence, the measured
inertia Imeas will be different from the test article inertia IT A measured in a vacuum. Added mass is a general term
for all aerodynamic effects that change the measured inertia of a body immersed in a fluid, as if the mass of the
body itself was changed. The influence of buoyancy and enclosed air mass actually results in a change in weight
of the test article, where buoyancy reduces the measured weight and the enclosed air adds to the measured weight
of the test article, respectively. The added mass due to the inertia of the fluid accelerated by the pendulum motion
is caused by a momentum change of the surrounding fluid due to an acceleration of the pendulum. It has the same
form as a mass term[20], hence the name.

As explained by Brennan [20], a body moving through a fluid adds a certain amount of kinetic energy to the
fluid. That kinetic energy T can be written for steady and rectilinear motion as

T =
1
2

m f luidV2 (26)

or, if incompressible flow is assumed,

T =
1
2
ρζV2 where ζ =

∫
V

vx

V
vy

V
vz

V
dV (27)

where V is the velocity of the body and the integral ζ is a measure of the volume of fluid affected by the motion of
the body inside the entire fluid domain V . The resulting differences in velocity relative to V in the flow field are
denoted vi. The product ρζ is then the mass of fluid affected by the motion of the object. The integral ζ is constant
for constant velocity V .

When the body accelerates or decelerates, as it constantly does during pendulum motion, the velocity V of the
body changes and with that the kinetic energy T imparted on the fluid. This requires additional work to be done by
the body, which is simply dT/dt. The rate of work done can then be expressed as FDV , where FD is an additional
drag force. Assuming that ζ is constant, that is, the flow pattern does not change, the added drag, FD, is

FD =
1
V

dT
dt

= ρζ
dV
dt

= m
dV
dt

(28)

where the sign of the force depends on whether the body accelerates or decelerates. The added drag force FD has
the same form and sign as a force required to accelerate or decelerate the mass m of the body. Therefore, the term
ρζ can be interpreted as an additional mass m f of fluid that is being accelerated or decelerated by the body. This
added mass m f has an inertia about the axis of rotation and hence the inertia measured is

Imeas = IT A + Im f (29)
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It should be observed that this added drag force is different from the ‘conventional’ drag force, which is pro-
portional to the square of the velocity of the body. The added drag described here is proportional to the change
in velocity of the body. Given the direct dependency on the fluid density ρ and the high density of water, this
effect is very important especially for hydrodynamic problems[20, 21]. However, it is also critical for the correct
determination of airframe inertial properties as previously discovered [8].

For full scale aircraft, the corrections due to the added-mass typically amount to 3% of the measured inertias
due to buoyancy. The enclosed air adds around 5% in the X-axis and is negligible in the Y-axis. Another 20%
are added in the X-axis due to Im f , while errors in Y and Z, caused by Im f , are about 5% [8]. For small scale
UAVs, the enclosed air mass and buoyancy are negligible because the airframes only have small internal volumes
and the volume of their structures is also small. Hence, the added mass due to these two effects will only add the
equivalent of a few grams of weight to a 2-5 kg airframe and therefore these two corrections can be neglected.
The third correction, Im f , however, is very significant for small scale UAV and thus requires careful consideration.
For example, the correction due to Im f in the X-axis is 25.1% for the UAV used for this research.

Methods have previously been developed to estimate Im f [8, 22, 23]. These methods are based on test data
for flat plates and ellipsoids to model the airframe’s shape from these basic bodies. The corrections for the full
test articles are then assumed to be the sum of the corrections for the separate components, ignoring potential
interference effects between the parts. For full scale aeroplanes, this appears to work quite well, with resulting
inertia estimates within 2.5% or less of the true value [22].

Applying the previously published methods to the given UAV geometry, results in corrections that are an order
of magnitude too small. It is unclear why this happens, since the datasets in [22, 23] are missing crucial infor-
mation to reproduce the findings. Alternatively, Brennan [20] introduces a method for estimating the corrections
based on results of a potential flow solver. Lin & Liao [21] handled the same problem using modern fluid-structure
interaction solvers. Both methods are conceptually very difficult and were beyond the scope of this project. In-
stead, geometrically similar models with known inertial properties, together with additional swing tests, will be
used to determine the corrections due to Im f for the given UAV.

It should be noted that none of the available publications on UAV inertial properties [11, 12, 13, 14, 15]
acknowledge the requirement of these corrections. These reported results must therefore be treated with care.

V. Methodology
The UAV used in this work is based on a commercially available model of a Piper Cherokee, which has been
extensively upgraded and equipped with a state of the art miniature flight data recorder. The UAV is used to
develop system identification techniques for this scale of aircraft. The UAV has 1.5m wingspan, weighs 4 kg
and is built from a balsa wood frame with a film cover, which is a standard construction method for this size of
airframe [24, 25, 26]. In addition to the UAV, several other test articles were used to test and verify the method.
These were generally simple shapes, where the true inertias could be derived from a CAD model. This allowed
to benchmark the methods with a known object, and also to generate estimates for the aerodynamic corrections
required.

The two pendulum experiments require an apparatus, which allows the test article to be mounted onto a support
frame that can swing about a single axis for the 1 DoF case and about three axis for the 3 DoF case. Initially, the
traditional knife edge suspension design [8] was used for the 1 DoF case and the three axis motion gimbal for the 3
DoF case. Testing has shown, however, that there is very little difference in the results if the gimbal is used for the
1 DoF case as well. One simply has to be careful to initiate the oscillations about a single axis only. Consequently
only the gimbal suspension rig was used for this work, which allowed a common apparatus between the methods.
The axes definitions for both experiments follow the standard flight mechanics conventions with X forward, Y out
to the right wing and Z down.

A. Experiment Setup

The experimental setups for the 1 DoF and 3 DoF cases are quite similar. The only difference is the design of
the support frame. The 1 DoF frame allows the airframe to be placed on its side for the Z-axis measurements.
To keep the pendulum length short, the frame has a bay for the test article to placed in, as shown in Figure 4b.
The 3 DoF frame, as shown in Figure 5, is flat because the test article can remain in a single position during the
tests. The support frame is suspended from a three axis gimbal on four steel cables to form the pendulum. The
gimbal contains high quality ball bearings to keep friction as low as possible. The gimbal is mounted onto a rigid
cantilever beam framework as shown in Figure 4.

The data acquisition system can be seen at the bottom of the frame in Figure 4(a). It consists of a miniature 9
degree of freedom IMU (Vectornav VN-100 [27]) and a small, custom designed processing unit that is connected
via wireless network to a control station. All data was recorded at 100Hz into the memory of the processing unit,
so no time delays caused by the wireless connection need to be considered. The data measured and recorded are
the rotation rates and the attitude angles of the frame.
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a) UAV on the support frame with data acquisition unit at the bot-
tom of the frame

b) UAV in position for Z axis measurements

Figure 4. UAV inertia measurement rig

Further data required from the experiments are the mass m of the pendulum, the gravitational acceleration g
and the distance from the pivot to the test article CG l. Gusev [28] reported on highly accurate measurements
for the gravitational acceleration at the University of Sydney, where this work was conducted. For the pendulum
length, the vertical CG position of the frame and test article was measured using the method of off-CG suspension
illustrated in Figure 2a. As discussed during the derivation of the equations of motion, the pendulum must be as
short as possible for good results. The limiting factor is the wing span of the test airframe, which can seen in
Figure 4(b). It would be possible to use a shorter length for the X and Y cases, but during testing it was shown that
the increases in accuracy did not warrant the extra effort in using two separate pendulum lengths.

1. 1 DoF Pendulum

The support frame for the 1 DoF case was designed to accept the UAV horizontally for the X and Y axes and and
lying on its side for the Z axis as shown in shown in Figure 4. This way, all axes could be tested using the bifilar
pendulum, avoiding the difficult trifilar pendulum method typically used for the Z axis [7, 8, 9]. The difficulty
of the trifilar pendulum is the requirement to excite the pendulum in pure rotation about the CG. In practice it
is very difficult, if not impossible, to set the pendulum in motion without causing translations. In addition, the
aerodynamic damping is large due to the vertical fin of the UAV. This makes it difficult to obtain a sufficient
number of oscillations for a valid measurement.

In each case, the UAV CG was aligned precisely below the pivot point (along the Z axis). An advantage of
the additional degrees of freedom of the gimbal is that the UAV does not have to be moved for the two horizontal
cases, which minimises errors due to CG alignment. Each test was initiated from rest by manually deflecting the
frame in one axis by about 5 degrees and letting go. Using only very small initial deflections reduces the damping
due to the drag. The oscillation was allowed a few seconds to settle from the disturbance of the release into pure
unforced oscillation before the data recording was started. Each recording was about 40 seconds and was repeated
at least 5 times.

2. 3 DoF Pendulum

The support frame for the 3 DoF experiment is shown in Figure 5. The test article has to be placed on the frame
in a single, horizontal orientation only. This enables a shorter pendulum as shown in the figure. The frame is
essentially a flat version of the previous frame, which makes it easier to locate its vertical CG location. It also
reduces the inertias of the frame itself, which have to be removed from the test results. The data acquisition system
is located in the plane of the frame and is identical to the 1 DoF case.

The tests were initiated manually as before. As will be discussed in the next section, the starting attitude is
very critical to obtain good results with this method. It is also necessary to vary the initial deflections to obtain
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Gimbal pivot

Frame

Figure 5. UAV inertia measurement rig for the 3 DoF case without test article

multiple solutions for a better judgement of the data quality. To achieve this, the pendulum was deflected between
5 and 10 degrees about X and Y and released. This was repeated multiple times with varying attitudes. Each
recording was 50 seconds on average.

B. Data Processing

The recorded data was then prepared for use with the output error system identification algorithm [19]. Due to
the long data sets and the low frequency content the sample rate was reduced by a third from the nominal rate of
100Hz without loss of information. The down-sampling was done by low pass filtering the data with a 10Hz cut-
off and then re-sampling it at 33.3 Hz. This reduces the runtime of the algorithm considerably without affecting
the accuracy of the parameter estimates.

1. 1 DoF Pendulum

The output error method for the 1 DoF case uses the equations of motion of Eq. 7. Parameters to estimate are the
inertia IO and the drag coefficient CD. Initial values for the parameters were generated by trial and error, based
on available information like previous test results or CAD results for the reference bodies. Figure 6 shows an
example dataset with the model output Y and the experimental data Z plotted on top of each other for comparison.
The figure also contains plots of the residuals Z − Y.

The Figure shows excellent agreement between the data and the model in both frequency and damping of the
oscillation. The residuals for the pitch rate q are purely random noise with less than 1% of the signal amplitude.
The pitch angle θ residuals still contain some sinusoidal component. This is caused by a small phase error between
the model and the experimental data. This phase error is most likely the result of a small error in the initial value
for θ and is of no consequence for the accuracy of the results. The quality of the model fit is similar across all
three axes and it is repeatable to a very high degree of accuracy as will be shown later. Therefore, the model of
the pendulum motion as developed above is correctly describing the data and can be used to identify the inertia of
the pendulum with high accuracy.

2. 3 DoF Pendulum

The system ID for the 3 DoF case uses the model equations Eqs. (24). Estimated parameters are the four inertia
terms Ix, Iy, Iz and Ixz, together with the three damping terms. Figure 7 shows a typical result of the process,
plotting the model over the measured data and showing the residuals similarly to the 1 DoF case. The model
fit to the data is excellent, which proves that Eqs. (24) describe the motion correctly. The assumption of any
aerodynamic force other than drag being insignificant appears correct. There are some minor phase differences in
the residuals which are most likely caused by an imperfect pendulum release but these have no influence on the
final results. On release, the pendulum probably may have not been fully at rest or the disturbance of the release
may not have completely dissipated throughout the recording.
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Figure 6. Example swing data with model fit and residuals

The Z-axis rotation is unforced and purely the result of the cross-coupling between the axes in the equations
of motion. The IZZ component is also the largest element in the tensor for a typical aircraft. Figure 7 shows that
the Z axis, denoted ψ in the Figure, has very low information content due to these physical properties. Over the
20 seconds duration plotted, only a single oscillation occurs, compared to 12 oscillations in the Y axis.

This low information content in the Z axis has several implications for the experiment execution as well as for
the processing of the data. During execution, it is important to choose starting attitudes which maximises the Z
oscillations. This requires considerable trial and error, because these starting attitudes depend on the ratio between
the inertias and the damping in the Z-axis of the test article. They are therefore different for each body tested.

During processing, the system ID algorithm is essentially attempting to establish the frequency and damping
of the motion of the pendulum. Attempting to do this with a single oscillation exceeding a period of 20 seconds
will not be very accurate. This shows up in the uncertainties reported by the algorithm and is illustrated in Figure
8. As shown, the uncertainties for the Z axis are an order of magnitude larger than for the X and Y axes. Naturally,
this leads to a larger deviation between repeats, which in turn, requires more runs than the 1 DoF pendulum to
achieve similar accuracy. Another effect of the low frequency in the Z axis is that the time window chosen for
the system ID can make a large difference in the results. This applies to the length of the window as well as to
the location. For example, a 20 second window of a particular dataset can yield an estimate for Iz of 0.6 kgm2 or
0.56 kgm2, which equals a 7% difference, depending on the starting point. The same dataset returns an Iz estimate
of 0.6 kgm2 or 0.62 kgm2 for a 20 second and a 30 second data window, respectively. This equals a 3% difference.
Finally, some datasets with particular starting attitudes do not converge at all. The best results were obtained from
starting attitudes that result in at least a full period of oscillation in the Z axis. Depending on the test article and
its damping properties, this may not be possible at all and a careful selection of the data window is required. This
is the case for the UAV under consideration, where the period of the Z oscillation can exceed 40 seconds.

To obtain a trustworthy result for Iz with the 3 DoF method, it is therefore necessary to repeat the experiment
often and use critical engineering judgement when interpreting and selecting the results. For this project, the
final tests with the Piper UAV were repeated 10 times. Each dataset was then processed with a 20 and 30 second
window and the final results were averaged. Obvious outliers with unrealistic parameter estimates were discarded
in the process.
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Figure 7. Example of a 3 DoF system ID result
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Figure 8. Piper flight inertia test results with uncertainties of each test point for two data time windows

C. Verification

As the next step, it is necessary to investigate the magnitudes of corrections Im f required to extract the true inertial
properties of the UAV. As mentioned above, the empirical formulas developed in [22] did not predict accurate
values for Im f for the Piper UAV. For example, using the method in [22], Im f for the X-axis was calculated be
0.02kg m2. The correct value, as determined experimentally, is 0.12kg m2. This is a difference of 83%. The
testing has also revealed that the corrections are not the same for the two swinging methods. It is therefore
necessary to develop a two-step verification and calibration process to estimate Im f for the Piper UAV.

The first step of verification is unique to this project. The UAV was tested extensively in the wind tunnel
to determine its aerodynamic properties. This was done using conventional static tests as well as more involved
dynamic tests, similar to reference [29]. Some of the stability derivatives can be estimated from either static
or dynamic tests and the results should be identical [30]. The dynamic test results contain the inertias of the
UAV while the static tests do not. The inertia estimates for the UAV could therefore be verified in a unique
way by matching the wind tunnel test results using the inertial properties from the swing tests and evaluating the
differences.

To estimate the value of Im f experimentally, a known body was used as a benchmark. As shown in Figure 9,
this body initially was simply a flat plate model of the UAV. It was made from particle board with approximately
uniform density and had similar weight and inertia properties as the UAV. The flat plate was modelled in a CAD
package to determine its inertias with high accuracy.
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a) On the 1 DoF support frame b) CAD model

Figure 9. Flat plate inertia simulator

Based on the derivations of the correction methods in [8, 22], the corrections for the UAV were calculated
from the flat plate tests by using the differences in the results to the CAD model. Preliminary testing, using the
wind tunnel data, showed that the flat plate corrections were too small. The corrections, however, were closer to
the empirical values in reference [22]. The experimentally determined correction for the flat plate model were
0.05kg m2, versus 0.02kg m2 from the calculations. Clearly, the flat plate model does not capture the full extent of
the added mass quantity for the UAV. The reason for this must be the three dimensional shape of the fuselage and
vertical fin of the UAV, since the wings are essentially a thick flat plate (although streamlined). During swinging
motion about the X-axis, the flow is perpendicular to the fuselage walls and there will be significant displacement
of air. This might lead to a larger body of air being affected by the pendulum and hence Im f will be increased.

The solution to the problem is shown in Figure 10. A foam simulator of the UAV was constructed to have
similar volume and surface area. It was then placed on the support frame and loaded up with aluminium bars to
have similar inertial properties as the UAV. The arrangement is shown in Figure 10(b). Figure 11 illustrates the
CAD model for the simulator configuration used for the 3 DoF case. Note the different location of the aluminium
bars compared to the 1 DoF case (Figure 10). Because the 3 DoF motion is more violent, the bars had to be
secured to the frame more rigidly than in the 1 DoF case, resulting in the given configuration.

Figure 10. Inertia simulator for the 1 DoF case
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Figure 11. CAD model of the support frame with two reference bars and the foam plane simulator for the 3DoF case

Since the foam density and dimensions, as well as the properties of the aluminium bars were known, the
simulator could be modelled in the CAD package relatively accurately and its inertial properties determined this
way. Given the geometric similarity of the simulator to the UAV, it is expected that the values for Im f obtained
from testing this simulator will be fairly close to the corrections required for the UAV.

The mass m and the pendulum length l were measured with a precision of ±1g and ±1mm, respectively. To
judge whether this accuracy is sufficient, a brief sensitivity study was performed using the 3 DoF method. Firstly,
a pendulum length change of 2mm during the system ID resulted in an error in the inertia estimate of 0.7% or
less. Then a run was performed with the mass increased by 5g. This lead to errors of less than 0.5%. It is not
expected to be able to estimate the size of the errors due to the aerodynamic effects with similar or better accuracy
and therefore the precision of the measurements of m and l was considered sufficient.

VI. Results
The first dataset presented and discussed in this section is for the flat plate, then for the foam UAV simulator,
and finally for the UAV itself. All datasets include the support frame. All tables list the identified results for the
respective inertias together with the uncertainty of the parameter estimate as reported by the output error algorithm
for multiple runs. The mean and standard deviation of the results are calculated and compared to the CAD results.
The differences are listed as an absolute value and as a percentage.

Because the support frame is different between the 1 DoF and the 3 DoF cases, the estimated inertias of
the full pendulum cannot be directly compared between the methods. This is not a serious limitation, because
corresponding CAD models were used to determine the corrections required.

A. Flat Plate

The 1 DoF results for the flat plate from Figure 9 are presented in Table 1. The repeatability is excellent and the
reported uncertainties are small over five runs in all axes. The comparison with the CAD results shows that the
inertias of the flat plate are over predicted in all axes, as expected. This is caused by the added mass inertia Im f .
Contrary to the corrections from reference [8], where the X-axis required the largest correction by a factor of 2 or
more, the flat plate here has the highest correction in the Y-axis. The X-axis correction is also more than twice as
big as the result computed with the method from reference [22], as discussed before.

The 3 DoF inertia estimates for the flat plate are listed in Table 2. The flat plate is symmetrical about the xz
and xy plane. Therefore the product of inertia Ixz of the plate is zero and the total Ixz of the plate on the frame is
negligibly small. As a result the system ID algorithm was unable to identify this parameter reliably, because it is
not sufficiently observable. It was therefore decided to remove the Ixz from the parameter vector and just identify
Ix, Iy and Iz, while setting Ixz to zero. This also reduced the uncertainties of Iz.

Similarly to the 1 DoF cases, the repeatability of the X and Y axes are very good, with small uncertainties. The
Z axis, however, has uncertainties an order of magnitude larger than the two other axes. The estimates for Iz vary
up to 10% between the runs.

Comparing the differences between 3 DoF experimental results and the CAD data to the 1 DoF case in Table
1, there are similar magnitudes of corrections for the X and Y axes. The Z axis, however, has a significantly
smaller correction due to the added mass effect in the 3 DoF case. This will be even more pronounced for the
3-dimensional bodies tested next. For both cases, the corrections due to the added mass are too small to satisfy
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Table 1. 1 DoF inertia test results of the flat plate with support frame

Run IXX [kg m2] IYY [kg m2] IZZ [kg m2]

1 0.651 ± 0.0002 0.01% 0.344 ± 0.0003 0.02% 0.835 ± 0.0007 0.02%
2 0.654 ± 0.0006 0.02% 0.343 ± 0.0002 0.01% 0.829 ± 0.0004 0.01%
3 0.650 ± 0.0003 0.01% 0.346 ± 0.0002 0.01% 0.829 ± 0.0003 0.01%
4 0.648 ± 0.0003 0.01% 0.344 ± 0.0001 0.01% 0.830 ± 0.0003 0.01%
5 0.649 ± 0.0002 0.01% 0.344 ± 0.0002 0.01% 0.829 ± 0.0005 0.01%

mean 0.650 ± 0.002 0.344 ± 0.001 0.831 ± 0.003

CAD 0.597 0.298 0.778

∆ 0.053 8.2% 0.046 13.4% 0.053 6.4%

Table 2. 3 DoF inertia test results for the flat plate with the support frame

Run IXX [kg m2] IYY [kg m2] IZZ [kg m2]

1 0.577 ± 0.003 0.1% 0.279 ± 0.003 0.1% 0.787 ± 0.013 0.8%
2 0.574 ± 0.004 0.1% 0.275 ± 0.003 0.1% 0.746 ± 0.025 1.7%
3 0.587 ± 0.003 0.1% 0.279 ± 0.002 0.1% 0.806 ± 0.021 1.3%
4 0.582 ± 0.005 0.2% 0.285 ± 0.003 0.1% 0.818 ± 0.027 1.6%
5 0.581 ± 0.005 0.2% 0.285 ± 0.002 0.1% 0.830 ± 0.051 3.1%

mean 0.580 ± 0.009 0.281 ± 0.008 0.797 ± 0.059

CAD 0.541 0.2425 0.7825

∆ 0.039 6.7% 0.039 14% 0.015 1.9%

the verification test using the aerodynamic derivatives. Clearly, the flat plate model of the UAV is not a suitable
simulator for the actual UAV, as expected.

B. Foam Simulator

To estimate the magnitude of corrections required due to the added mass effect Im f the UAV foam simulator from
Figure 10 was tested next. The 1 DoF results are listed in Table 3. Again the repeatability is excellent with very
small uncertainties, leading to high confidence in the results. Comparing the mean values for the estimated inertias
to the CAD predictions shows significant deviations for all axes due to the aerodynamic effects. The additional
inertias are 25% for the X axis, 18% for the Y axis and 15% for the Z axis, considerably more than for the flat
plate and the full scale airframe in [8]. The IXZ term is too small to be estimated reliably and no attempt has been
made to test for it in the 1 DoF experiments.

The 3 DoF test results are listed in Table 4. Each run was processed with a 20 second and 30 second data
window, as discussed above. The results for the X and Y axis perfectly repeatable, as for the flat plate and they do
not depend on the data window. The Z axis, again, shows more spread across the runs and the results also vary
depending on the data window.

Comparing the added-mass corrections between the two cases, significant differences can be seen between the
two methods. The X and Y corrections of the 3 DoF case are about half of the 1 DoF experiment. The correction
for the Z axis is even negative for the 3 DoF case. Both corrections are, however, correct for their respective
methods, as will be shown in the next section. It appears that the added mass corrections depend on the type of
motion the pendulum performs. A possible explanation may be that the assumption of constant integral ζ, that
is the volume of affected fluid in the derivation of the added mass in Section IV, is violated by the larger, more
complex motion pattern of the 3 DoF pendulum. More research with different bodies would be required to fully
explain this phenomenon.

The foam simulator is geometrically similar to the UAV and was set up to have comparable inertial properties.
Therefore, the deviations between the experimental data and the CAD results for the respective methods are
expected to be valid to correct the experimental results for the unknown inertial properties of the UAV, as discussed
next.
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Table 3. 1 DoF inertia test results of the foam simulator with support frame

Run IXX [kg m2] IYY [kg m2] IZZ [kg m2]

1 0.481 ± 0.0002 0.01% 0.492 ± 0.0006 0.03% 0.744 ± 0.0004 0.01%
2 0.481 ± 0.0003 0.01% 0.491 ± 0.0004 0.02% 0.745 ± 0.0004 0.01%
3 0.482 ± 0.0002 0.01% 0.492 ± 0.0004 0.02% 0.745 ± 0.0005 0.02%
4 0.482 ± 0.0004 0.02% 0.488 ± 0.0002 0.01% 0.745 ± 0.0004 0.01%
5 0.486 ± 0.0005 0.03% 0.486 ± 0.0003 0.02% 0.744 ± 0.0003 0.01%

mean 0.482 ± 0.002 0.490 ± 0.003 0.745 ± 0.001

CAD 0.361 0.404 0.631

∆ 0.12 25.1% 0.09 17.6% 0.11 15.3%

Table 4. 3 DoF inertia test results for the foam simulator with the support frame (each run reported for 20 sec and 30 sec data)

Run IXX [kg m2] IYY [kg m2] IZZ [kg m2] IXZ [kg m2]
1 0.279 ± 0.001 0.1% 0.432 ± 0.001 0.0% 0.506 ± 0.024 2.3% 0.002 ± 0.003 56.8%

0.279 ± 0.001 0.1% 0.432 ± 0.001 0.0% 0.535 ± 0.012 1.2% 0.001 ± 0.004 219%
2 0.282 ± 0.001 0.1% 0.433 ± 0.001 0.0% 0.520 ± 0.010 0.9% 0.004 ± 0.002 28.2%

0.281 ± 0.001 0.1% 0.434 ± 0.001 0.0% 0.548 ± 0.012 1.8% 0.004 ± 0.001 12.7%
3 0.283 ± 0.001 0.1% 0.432 ± 0.001 0.0% 0.530 ± 0.012 1.2% 0.008 ± 0.003 22.6%

0.281 ± 0.001 0.1% 0.432 ± 0.001 0.0% 0.564 ± 0.014 1.2% 0.008 ± 0.004 23.3%
4 0.286 ± 0.000 0.0% 0.435 ± 0.001 0.0% 0.513 ± 0.001 0.1% 0.003 ± 0.003 40.7%

0.284 ± 0.000 0.0% 0.435 ± 0.001 0.0% 0.547 ± 0.014 1.3% 0.001 ± 0.005 164%

mean 0.282 ± 0.005 0.433 ± 0.002 0.533 ± 0.037 0.004 ± 0.005
CAD 0.2147 0.3857 0.5914 0.0038

∆ 0.067 23.8% 0.047 10.9% -0.058 -10.9% -

C. UAV

The 1 DoF test results for the UAV are listed in Table 5. As before the test results are fully repeatable over five runs
and the reported uncertainties on the estimated inertias are very low. No test was performed for IXZ in the 1 DoF
case. The 3 DoF tests were run 20 times to improve the accuracy of the Z axis. The individual results are plotted
in Figure 7 and a summary is listed in Table 6. The standard deviations for the 3 DoF case are at least an order of
magnitude larger than for the 1 DoF case. The mean values were then corrected using the factors determined with
the foam simulator for the respective method above.

Table 7 lists the final results for the UAV’s inertial properties. The support frame contributions were removed
using Eq. 10. The agreement between the two methods is good, only the X axis shows a difference above 10%.

Table 5. 1 DoF inertia test results of the UAV including the support frame

Run IXX [kg m2] IYY [kg m2] IZZ [kg m2]
1 0.499 ± 0.0002 0.01% 0.518 ± 0.0002 0.01% 0.750 ± 0.0005 0.02%
2 0.498 ± 0.0002 0.01% 0.518 ± 0.0002 0.01% 0.745 ± 0.0003 0.01%
3 0.499 ± 0.0002 0.01% 0.516 ± 0.0003 0.02% 0.746 ± 0.0004 0.01%
4 0.497 ± 0.0002 0.01% 0.517 ± 0.0004 0.02% 0.746 ± 0.0003 0.01%
5 0.499 ± 0.0001 0.01% 0.518 ± 0.0002 0.01% 0.746 ± 0.0004 0.01%

mean 0.498 ± 0.001 0.517 ± 0.001 0.747 ± 0.002
Correction -0.12 -25.1% -0.09 -17.6% -0.11 -15.3%

Final 0.378 0.427 0.637
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Table 6. 3 DoF inertia test results for each run including the support frame of the UAV

IXX [kg m2] IYY [kg m2] IZZ [kg m2] Ixz [kg m2]

mean 0.340 ± 0.013 0.449 ± 0.006 0.550 ± 0.080 −0.011 ± 0.006

Corr. 0.067 0.047 −0.058

Final 0.27 0.40 0.61 -0.011

Table 7. UAV inertial properties final results in [kg m2]

Axis 1 DoF 3 DoF ∆ (in %)
IXX 0.22 0.19 -13.6%
IYY 0.31 0.31 -
IZZ 0.51 0.48 -5.9%
IXZ - -0.01 -

Table 8. UAV stability derivative benchmark using the 1 DoF results

Axis Stability Static Dynamic Error Dynamic Error
Derivative (reference) (I uncorrected) (I corrected)

X Clβ -0.061 -0.039 -36% -0.061 -

Y Cmα -0.948 -0.74 -22% -0.956 0.8%

Z Cnβ 0.087 0.072 -17% 0.090 3.3%

Given the discussed issues with the 3 DoF method and the added mass corrections, this is a good result. More
research, however, should be done to improve the 3 DoF method before it can be preferred over the 1 DoF method
for small fixed wing UAVs. Once perfected, the 3DoF method will be easier and quicker than the traditional 1DoF
method, because the UAV only needs to be swung in a single orientation to obtain the entire inertia tensor. For
the current project, the 1 DoF results were used for the subsequent flight dynamic analysis. Only the IXZ value
was used from the 3 DoF experiment. The final results also confirm that the added mass corrections are specific to
the test article and the experiment used. For each test article it will be necessary to construct a reference body of
known inertial properties and determine the added mass corrections with the described methods. At this stage, no
method exists to transfer the corrections between test articles. This will require a large database of different UAV
shapes to be tested, similarly to the design data available for full scale aircraft [31]. This is beyond the scope of
this project.

Table 8 lists the results of the aerodynamic derivatives from the wind tunnel tests. The static test data is used
as the reference. It should be matched by the results from the dynamic tests, which include the inertial properties.
The table shows that the obtained derivatives have large deviations when determined using the uncorrected inertial
properties of the UAV. With the corrected data the match to the static data is excellent. In the Z-axis, the difference
is higher than for the other two axes, which is most likely caused by a small remaining error in the added mass
correction for that axis. To improve this result, one would need to use a simulator body for which inertial properties
are more precisely known than it was the case for the foam simulator used here.

These results demonstrate that the devised test- and correction methods are working correctly. The table also
emphasises that without performing these corrections, the estimates for the inertial properties of the UAV will be
in error by a significant amount.

VII. Conclusion
Two methods have been tested and compared for the determination of the inertial properties of a small, fixed wing
UAV. The first method uses the standard single degree of freedom pendulum method. The second experiment
implemented a novel and potentially easier three degree of freedom pendulum method, which yields the entire
inertia tensor from a single swing test. Both methods used system identification of the pendulum motion to
estimate the inertial properties of the UAV.

Substantial corrections due to the effect of added mass, caused by the acceleration of the pendulum immersed
in the surrounding air, need to be applied to the results to obtain the correct values for the inertial properties of the
UAV. It has been found that the methods presented in previous literature to determine the corrections for full scale
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aircraft do not give the correct results for the small scale UAV. At this stage, the only feasible method to generate
these corrections are swing tests with a geometrically similar object of known inertial properties. It has also been
found that the corrections are specific for the type of experiment and cannot be transferred between the 1 DoF and
3 DoF case. This has to be kept in mind when applying one of the methods.

Several benchmarking methods, including the innovative use of results obtained from static and dynamic wind
tunnel tests, have been utilised to prove the accuracy of the results obtained with both swinging methods. Very
good agreement between the experiments and the reference data was achieved. Both methods agree well, but there
is more research required before the three degree of freedom pendulum method can be used with equally high
confidence to determine inertial properties of small, fixed wing UAVs.
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